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An investigation of the stability of plane Couette flow with viscous heating of a 
Navier-Stokes-Pourier fluid with an exponential dependence of viscosity upon 
temperature is presented. Using classical small perturbation theory, the stability 
of the flow can be described by a sixth-order set of coupled ordinary differential 
equations. Using Galerkin’s method, these equations are reduced to an algebraic 
eigenvalue problem. An eigenvalue with a negative real part means that the flow 
is unstable. 

Neutral stability curves are determined at Brinkman numbers of 15, 19, 25, 
30,40,80 and 600 for Prandtl numbers of 1 , s  and 50. A Brinkman number of 19 
corresponds approximately to the maximum shear stress which can be applied 
to the system. 

The results indicate that four different modes of instability occur: one termed 
an inviscid mode, arising from an inflexion point in the primary flow; a viscous 
mode, due to the stratification of viscosity in the flow field and an associated 
diffusive mechanism; a coupling mode, resulting from the convective and viscous 
dissipation terms in the energy equation; and finally a purely thermal mode. 

~ ~ 

1. Introduction 
Plane Couette flow, that is, simple shear flow between two infinite parallel 

flat plates, is the most elementary type of laminar motion, and probably the 
system most widely studied by investigators of hydrodynamic stability. All 
existing investigations tend to show that the flow is always stable to small 
disturbances for a Newtonian fluid with constant physical properties. 

The behaviour of infinitesimal disturbances of plane Couette flow has been 
examined most recently by Gallagher & Mercer (1962, 1964), who employed 
a method of analysis similar to that used in the present work. They first calculated 
the lowest eigenvalue for the problem and later examined the higher eigenvalues. 
Their results, which are almost identical to those of Southwell & Chitty (1930), 
showed that the flow is always stable for finite Reynolds numbers. Deardorff 
(1963) arrived at  the same conclusion. Ponomarenko (1968), using asymptotic 
and numerical methods, showed that the flow is stable as the Reynolds number 
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approaches infinity. Finally, Gallagher (1969) examined a proof by Petrov (1940) 
which showed that both plane Couette and plane Poiseuille flow are always stable. 
Gallagher found Petrov’s proof to be incorrect, but was able to recover the result 
for plane Couette flow. 

Gill ( 1965) has shown that only asmall change in the undisturbedvelocity profile 
is required to change the profile from a stable one to an unstable one. The change 
must be such as to produce a local maximum in the magnitude of the vorticity. 

Such a condition exists for the plane Couette flow of a Newtonian fluid with an 
exponential dependence of viscosity on temperature. Joseph (1964) and Gavis & 
Laurence (1968) have solved the equations defining the steady temperature and 
velocity profiles in such a case. They found that these profiles are not given 
uniquely by the shear stress. They are, however, given uniquely by the Brinkman 
number. These authors also found that there is a maximum shear stress which 
can be applied to the system. 

Joseph (1965) investigated the stability of plane Couette flow with viscous 
heating. I n  the inviscid limit the velocity profile is stable along the low branch of 
the shear stress curve and unstable on the high branch. However, Joseph did not 
attempt to determine the stability characteristics a t  finite Reynolds numbers. 

Goldstein (1968) analysed the low Reynolds number case and also found that 
instability can occur. This paper represents an extension of Goldstein’s analysis 
and attempts to describe the neutral stability surface for the flow in the four- 
dimensional space of wavenumber, Reynolds, Prandtl and Brinkman numbers. 
I n  5 2, we state the equations for the steady temperature and velocity profiles, 
develop those for the infinitesimal disturbances and show how these equations 
can be solved. I n  $ 3  we discuss the accuracy of the method and present the 
neutral stability curves for the flow. I n  5 4 we examine the limiting cases of flows 
with constant viscosity and no viscous heating. Finally, the physical bases of the 
instability and the shape of the neutral stability surfaces are discussed in 5 5 .  

2. Formulation of the problem 
In  the analysis of the stability characteristics of plane Couette flow with 

viscous heating, we employ small perturbation theory. Assuming that the 
velocity, temperature and pressure fields suffer small deviations from the 
primary fields, we find the equations describing these deviations. The resulting 
differential eigenvalue problem can be reduced to an algebraic one using 
Galerkin’s method. 

In the mathematical formulation of this stability problem, we shall impose 
the following restrictions on the fluid. 

(i) The fluid is incompressible. 
(ii) The shear stress is a linear isotropic function of the rate of strain 

(Newtonian or Navier-Stokes fluid). 
(iii) The heat flux is a linear isotropic function of the temperature gradient 

(Fourier fluid). 
(iv) All physical properties except viscosity are constant. 
(v) The viscosity is an exponential function of temperature. 
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Less restrictive assumptions could be taken. I n  particular, we could include 
buoyancy effects. Gallagher & Mercer (1965) and Ingersoll (1966) examined the 
plane Couette flow of a Newtonian liquid with constant viscosity and variable 
density subjected to a temperature gradient. Miiller (1968) studied such a flow 
for a non-Newtonian fluid. All these investigations show that convective insta- 
bility occurs at some critical value of the Rayleigh number. Below the critical 
value, the flow is stable for any Reynolds number. 

It is not our purpose to examine here the convective instability problem. 
Rather, we wish to show that temperature-dependent viscosity and viscous 
dissipation alone can cause the flow to become unstable a t  a finite Reynolds 
number. For many Newtonian liquids of interest, the variation of thermal con- 
ductivity and density with temperature is small compared with variations of 
viscosity. Hence, assumptions (iv) and (v) do not represent stringent limitations 
on the applicability of the present analysis. 

2.1. The steady projiles 

The viscosity-temperature relation which we shall use was shown by Nahme 
(1940) to approximate closely the variations of viscosity of many liquids over 
a wide temperature range: 

P = Po exp { - P(T - ~ 0 ) P O l .  (2.1) 

In  this equation, /3 is an empirical constant andp, is the viscosity a t  the reference 
temperature To. For liquids, P is a positive number, and we restrict ourselves to 
this case. I n  the plane Couette system we consider here, the upper plate moves 
in the +x, direction with velocity 6. The plates are separated by a distance h, 
and both are at a constant temperature To. 

Gavis & Laurence solved the equations for conservation of linear momentum 
and energy for this system. If we define the dimensionless variables 

where 3 is the fluid velocity in the +x, direction, their results become 

8 = ln(asechzby), U = *(I +ctanhby), (2.3) 

where 

2.2. The stability equations 

To analyse the stability of the flow subject to infinitesimal disturbances, we 
assume that the velocity, temperature and pressure consist of a steady part plus 
a small deviation from the steady value : 

vi = vi+dV;, T = T + ~ T ‘ ,  p = 9 + d p i .  (2 .5 )  

The overbar indicates that the quantity is time independent, and S is a measure 
of the magnitude of the time-dependent disturbance, denoted by a prime. 

Since the viscosity is an explicit function of the temperature and depends 



654 P. C.  Sukanek, C.  A .  Goldstein and R. L. Laurence 

implicitly on position, it can be expanded in a Taylor series about the steady 
temperature T. Using (2.11, we can write 

,!I, = ,E(1-,86T'/To)+0(62). (2.6) 

By substituting (2.1) and (2.2) into the conservation of mass, linear momentum 
and energy equations, subtracting the equations for the primary flour, and neg- 
lecting all terms nonlinear in 6, we arrive a t  the conservation equations for the 
small disturbances. Defining the dimensionless variables : 

(2.7) 

ui = v;/v,, ~i = X i / h ,  9 = FIPo, 
9 = PT'/T,, r = &t/h, 9 = P'/PV& 

ui = qv, ,  Re = P W / P , ,  Pe = pC,Y,h/k, 

these equations become? 
auipyi = 0, 

For the isoviscous case, Squire (1933) has shown that the critical Reynolds 
number for two-dimensional disturbances is less than that for three-dimensional 
ones. We show in appendix A that this is not the case for the viscous heating 
problem. No simple transformation which could reduce the three-dimensional 
problem to a two-dimensional one exists. 

The three-dimensional disturbances increase the complexity of the stability 
problem. Consideration of the simplest case, however, should precede a more 
complete analysis. As Lees & Lin (1946) first examined the stability to two- 
dimensional disturbances of compressible boundary layers, for which a Squire's 
theorem cannot be proved, and, later, Dunn & Lin (1953) examined the complete 
three-dimensional case, we shall ignore, for the present, the three-dimensional 
problem and consider only two-dimensional disturbances. 

The next step in stability analysis is the introduction of the standard normal- 
mode expansion for the time-dependent disturbances. Assuming, then, that the 
disturbances ui, 9 and B are of the form 

we obtain a set of four equations governing the dimensionless amplitude func- 
tions. These four equations are further reduced to a set of two coupled equations 
by the usual methods. Dropping the caret and letting u2 = v, we arrive at 

D2(gD2v) - 2a2D(gDv) + a2(D2g) v + a4gv + iaRe(D2U) v 

- iaRe(U-$)  (D2-a2)v+ia(gDU)(D2+c3)s  = 0 (2.12) 

t Here and throughout this paper, summation over repeated indices is implied. 
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and i a ( D 2 - a 2 ) 9 - B r g ( D U ) z i ~ ~ + ~ 2 ( U  -6) P e a  

= iavPeDB+ZBr(gDU) (D2+a2)v, (2.13) 

where D = d/dq2. These equations must be solved subject to the boundary 
conditions 

v = D v = 9 = 0  at y 2 = f l .  (2.14) 

A change of variable simplifies the equations further. If we let 

(2.15) I F = ia9, u = i ( l+%))  

Q = gDU = constant, - & 6 =  1-6 2 2 7 2 - 7 9  - 

equations (2.3) and (2.12)-(2.14) become 

92 = c tanh by, (2.16) 

DZ(gD2v) - 2a2D(gDv) + a2(D2g) v + a4gv + &iaRe(D2@) v 
- & d ? e ( % -  6) (D2 - a2)v + Q(D2 + a2) F = 0, (2.17) 

( 0 2  - a2) F - +QBr(D92) F - &iaPe(% - 5)  F 
- iaPeD8v-2QBr(D2+a2)v  = 0 (2.18) 

and v = D v = F = O  at ~ = I f r l .  (2.19) 

2.3. Reduction to an algebraic eigenvalue problem 

Equations (2.17)-(2.19) define an eigenvalue problem. If the imaginary part of 
the eigenvalue 6 is positive, the flow will be unstable. 

An approximate solution to the stability problem can be found using 
Galerkin’s method (Ames 1965, p. 243). Finlayson (1968) and Finlayson & 
Scriven (1968) give examples of the Galerkin method applied to other stability 
problems. The variables v and F are expanded in complete sets of orthogonal 
functions which satisfy the boundary conditions. The coefficients of these func- 
tions are chosen by forcing the errors resulting from the substitution of these 
functions into the original differential equations to be orthogonal to the trial 
functions in the domain of interest. 

The velocity disturbance v is expanded in a set of functions described by 
Reid & Harris (1958) and Chandrasekhar (1961, p. 643):  

where sinh ,u, 7 sin p, y 
sinh,un sinp, 

cosh h , ~  cos Any 
cn(7) = coshh, cosh, ’ 

S,(7) = 

(2.20) 

I (2.21) 

and p, and A, are given by the roots of the equations 

tanhh+tanh = 0,  cothpccotp = 0. (2.22) 
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Both {S,} and {Cn} form orthogonal sets on the interval [ - 1, + 11. The set (8,) 
is everywhere orthogonal to the set {C,}: 

The temperature disturbance F is expanded in a Fourier series: 
N 

n=l  
r N  = C {CnSinpnv+dn cospn7}, 

(2.23) 

(2.24) 

wherep), = &(2n- 1)n. 
If the series approximations to v and fl, equations (2.20) and (2.24), are 

substituted into (2.17) and (2.18), there will be a residue. If we call ci, the error 
in (2.17) and e& that in (2.18), Galerkin's method requires that the constants 
a,, b,, c, and d, be such as to satisfy the equations 

By performing the integrations in equations (2.25) and using the definitions in 
appendix B, the differential stability problem is reduced to an algebraic problem. 
Equations (2.25) can then be written in matrix form as 

Cl 0 

-iA3 BZ-hB3 iB, C2-hC3 0 iD2 Dl ) (i) = 0, (2.26) 

- iA, DT iDf D3-hC3 

or Gg = 0, (2.27) 

where h = ic. (2.28) 

The matrix G in (2.27) is asymmetric with complex elements. Gallagher & 
Mercer (1962) considered an analogous problem and suggested a transformation 
to map the matrix G into one having real elements. A similar transformation is 
employed here. 

Consider the complex diagonal matrix 

' I 0 0 0  

0 0 1 0 '  .i. O O O i l  i' O .i 
where I is the N x N identity matrix. We can define a new vector 

(2.29) 

g = s-1g. (2.30) 
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Also, let 

Premultiplying (2.27) by HE and using (2.30), we have 

HGGG-lK = 0,  
or 

657 

(2.31) 

(2.32) 

A,1 A1 - hl A,1 B1 A;lC, 0 

Bg1A3 BglB,-hl 0 

C;l A, C;l Dr -Cz1DT Cg1D3-hl 

B'lD1 ) f) = 0. (2.33) 

The stability parameters h are nothing more than the eigenvalues of the real 

c,1 C? C;l B, C,l C, - hl Cgl D, 

(2.34) 

A,lA1 A;lB, A;IC1 

0 

matrix 

C;lC,T C;lB, C;lC, 
C;lA, CglDT -CglDr Cg1D3 

From the definition of A, equation (2.28), the stability of the flow dependsupon 
the sign of the real part of A. If it  is positive, the flow will be stable. However, if it  
is negative, the flow will be unstable with respect to that particular mode, and 
the disturbance will grow until nonlinear effects dominate. 

The eigenvalue problem was solved on the CDC 3600 digital computer. All the 
integrals were evaluated numerically using the Gaussian quadratures. The eigen- 
values of A were found by the Q-R transformation, as described by Francis 
(1961). The details of the computer program can be found in Sukanek (1970). 

3. Results 
As opposed to the differential eigenvalue problem, which possesses an infinite 

set of eigenvalues, the algebraic problem yields only a finite number of charac- 
teristic values, the number depending on how many terms are used inthe 
functions approximating the velocity and temperature disturbances. If the real 
part of any one of these eigenvalues is negative, the flow will be unstable. There- 
fore, in the search for neutrally stable modes, we have to be concerned only with 
the eigenvalue A, with the least positive real part. 

We found that the numerical procedure used to calculate the eigenvalues 
became unstable for N greater than six or eight. However, for N greater than 
four, as N increased, A, varied only slightly. Also, the time required to find the 
eigenvalues increased as N3.  We felt that a good compromise between computing 
time and precision of results would be obtained by taking N as four. This means 

42 F L M  57 
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a Re a 

0.125 0 
1 
2.5 

1-25 0 
1.075 
3.225 

12.5 0 
2.32 
4.64 

h , ( G & M )  

158 
149 
187 

15.8 
14.8 
24.1 

1.55 
1.88 
4.27 

A,, (present) 

157 
149 
187 

15-8 
14.9 
24.1 

1.59 
1.81 
4.13 

TABLE 1. Comparison of present results with those of Gallagher & Mercer (1962) 

that a total of sixteen eigenvalues were calculated for each case, requiring 
2-2.5 s of computer time per case. 

The real part of A, approaches a limiting value from above aa the number of 
terms increases. This indicates that the approximation to the true value of h, is 
conservative. Therefore, the results presented here correspond to an upper bound 
to the solution of the stability problem. 

As a check on the accuracy of the Galerkin method and the computer program 
for solving this stability problem, the program was modified to examine the 
stability of isoviscous plane Couette flow, a problem often attempted and well 
documented in the literature. Table 1 shows the results of these calculations. The 
lowest eigenvalues, all real for the set of parameters considered, for several values 
of wavenumber and aRe, the product of wavenumber and Reynolds number, 
are compared with the results of Gallagher & Mercer (1962, denoted by G & M). 
The percentage difference between our eigenvalues and theirs varies from 0 to 
less than 4 yo. 

Assured of the precision and accuracy of the methods, we proceed with the 
investigation of the stability characteristics of plane Couette flow with viscous 
heating. The points of neutral stability, that is, points where the real part of A, is 
zero, were computed in a straightforward manner. The Prandtl and Brinkman 
numbers and aRe were fixed and a Pibonacci search (Wilde & Beightler 1967, 
pp. 236-241) was used to find the corresponding wavenumbers for neutral 
stability. Sixteen Pibonacci numbers were used, determining a to approximately 
three decimal places. 

Curves of neutral stability computed in this manner were calculated at 
Brinkman numbers of 15, 19, 25, 30, 40, 80 and 600 for Prandtl numbers of 
1 , 5  and 50. The maximum shear stress which can be applied to the system corre- 
sponds to a Brinkman number of 18.214.t 

For Brinkman numbers lower than 15, the numerical procedure becomes 
unstable because of the large values of aRe a t  the onset of instability. Hence, 
although the flow can be unstable a t  lower Brinkman numbers, neutral stability 

t From the work of Gavis & Laurence, this Brinkman number is given by the solution 
of the equation, +Br = sinh2[(8+Br)/Br]*. 
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Re 

FIGURE 1. Neutral stability curves for (a)  Pr = 1.0, (b)  Pr = 5.0 and 
(c) Pr = 50.0. 

42-2 
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1.6 

a 
1.2 
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/ 

I 
10 50 10' 5 x 102 103 5~ 1 0 3  lo3 

Re 

FIGURE 2. Neutral stability curves for Pr = 50.0 for low and intermediate 
values of Br. 

Br 

15 

19 

25 

30 

40 

80 

600 

Pr 

1 
5 

50 

1 
5 

50 

1 
5 

50 

1 
5 

50 

1 
5 

50 

1 
5 

50 

1 
5 

50 

Re,,,t 
- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
136 
191 

116 
68.2 
64-2 

31-8 
27.7 
22.9 

3.67 
3.92 
4.01 

- 791 
- 726 
- 1160 

- 301 
0.406 289 
0.283 322 

0.473 - 

0.645 - 
0.623 - 

0.85 - 
0.975 - 

0.96 - 

1.581 - 
1.527 - 
1.496 - 

Rewit 
- 
- 
- 

5240 
3885 
- 

2344 
2024 

1695 
1519 

- 

- 
1065 
1042 

(1043) 
- 
- 
__ 

- 

- 
- 

a 

- 
- 
- 

0.410 
0.451 
- 

0.597 
0.618 
- 

0.655 
0.659 
- 

0.758 
0-768 
0.767)t 
- 

- 
- 

- 

- 
- 

Re,,, 

3500 
3475 
1156 

3490 
3455 
1028 
- 
- 
960 

3824 

980 
- 

- 
- 
- 

- 
- 

- 

- 
- 
- 

a 

0.957 
0.979 
1.60 

0.945 
0.955 
1.535 
- 
__ 

1.355 

1.046 

1-225 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

t This could be either type 3 or type 4 instability. 

TABLE 2. Critical parameters 
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curves will not be presented because of the dubious nature of the numerical 
results for these cases. 

The neutral stability curves are given in figures I (a), (b )  and (c).  Figure 2 is 
an enlarged version of the curves a t  low and intermediate Brinkman numbers 
for Pr = 50. Obviously, there are four different modes of instability. Corre- 
spondingly, there can be as many as four critical Reynolds numbers for given 
Brinkman and Prandtl numbers. However, for any one curve, no more than 
three could be determined. These critical values are given in table 2. 

In  all the calculations, except for high values of aRe, the eigenvalue with the 
least positive real part was purely real. For the higher Reynolds numbers, h, 
occurred as  a complex conjugate pair. In  no case was the imaginary part equal 
to f 0.50. Hence, from the definition of A, equations (2.28) and (2.15), the first 
unstable mode js always oscillatory and the principle of exchange of stabilities 
does not apply. 

4. Limits of constant viscosity and no viscous heating 
After an examination of the general characteristics of the neutral stability 

curves for the viscous heating problem, one asks what is the nature of the stability 
of the isoviscous flow. Can the behaviour predicted by the Om-Sommerfeld 
equation, which is a special case of the equations developed here, be recovered 
from this analysis Z 

To answer this question we shall consider two cases, constant viscosity 
(p = 0) and no viscous heating (Br = 0). Both limiting cases should be stable. 

Taking first the limit of equations (2.16) and (2.17) as p approaches zero, we 
obtain the following set of equations governing the stability of isoviscous plane 
Couette flow with viscous heating: 

D4v - 2a2D2v + a4w - @aRe(q - 6) (0, - a,) v = 0 (4.1) 

and (D2 - a,) F' - &iaPe(q - 5)  9' + kiaPeBr'qv - Br'(D2 + a2) v = 0,  (4.2) 

where F' = FIB, BY' = Brlp. (4.3) 

Equation (4.1) is the Orr-Sommerfeld equation for plane Couette flow. It 
predicts stability at all Reynolds numbers. To determine the stability of the 
flow, we must examine the eigenvalues of the energy equation (4.2). This can be 
rewritten as 

(D2-a2)Fr-BiccPe(q-6)~' =f(q). (4.4) 

To find the eigenvalues 6, we need only look at the homogeneous equation. 
Multiplying this equation by the complex conjugate 9-'* of F', and integrating 
from q = - 1 to q = + 1, we obtain 

- K,+ (&aPeC-a2) K,- &iaPeQ = 0,  (4-5) 
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By adding to (4.5) its own complex conjugate and using the inequality 

$ape(& - &*) 6 aPe(K,)*, (4.7) 

we can bound Im ((5) from above: 

2(K, + a2K,) + aPe(K,)t 
aPeK, Im(c) 6 - 

Since Im (5)  is always negative, the flow is always stable. 
In  the limit of no viscous heating, the Brinkman number is zero. Stability is 

governed by the Orr-Sommerfeld equation, and again, the flow is stable. 
It should be noted that the case of zero p is vastly different from the case of 

very small p. When the former is true, the primary velocity profile is a straight 
line, and the flow is always stable. For the latter case, however, the primary 
velocity profile possesses a point of inflexion, the viscosity becomes stratified 
throughout the flow field, the stability equations become coupled and the flow 
can be unstable. 

5. Discussion 
5.1. Physical basis for  instability 

The neutral stability curves shown in figure 1, especially for large Brinkman 
numbers, bear a striking resemblance to those given by Knowles & Gebhart 
(1968) and Nachtsheim (1963) for natural convection. The stability of their 
system is also described by a sixth-order set of coupled ordinary differential 
equations, the coupling being the result of temperature-dependent density and 
an imposed temperature difference. Gebhart (1971, pp. 377 ff.) attributes the 
bulge in the neutral stability curve to this coupling. Betchov & Ckiminale (1967, 
p. 193), in discussing Nachtsheim’s results, suggest two modes of instability: one 
mode similar to the ordinary instability of an isothermal parallel flow and another 
coupling mode, depending on temperature fluctuations. 

The neutral stability curves presented here show four different modes of 
instability. The various curves sketched in figure 3 can be thought of as being 
archetypal of these four different modes. Since none of the neutral stability curves 
calculated here show the four types of instability distinctly, we shall refer to this 
figure in discussing the different mechanisms of instability. There is one mode, 
which we shall call the inviscid mode, which is a result of having a primary 
velocity distribution with an inflexion point. The second mode, the viscous mode, 
results from the interaction of the variable viscosity with the viscous terms in the 
momentum equation. 

A third mode exists because of the coupling of the two stability equations, 
through the convective terms and the viscous dissipation term in the energy 
equation. Finally, there is a fourth mode which is a purely thermal mode, and 
arises from the temperature equation. 

Hereafter, we shall refer to these four modes simply as inviscid, viscous, 
coupling and thermal. We now discuss each in turn. 
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Re 

FIGURE 3. Idealized neutral stability curves. 

The existence of the inviscid mode is a consequence of having a primary-flow 
velocity distribution of the form 

U = b tanhcq. (5-1) 

This type of profile is usually associated with shear layers (see, for example, 
Betchov & Criminale (1967, pp. 26-37, 74-83) and Esch (1957)). Profiles of this 
type, which possess an inflexion point at  the centre-line, do not satisfy Rayleigh’s 
theorem and do satisfy Pjortoft’s theorem (Yih 1969, pp. 470-472), indicating 
that the flow may possibly be unstable in the inviscid limit. 

Joseph (1965) analysed the viscous heating profile in the limit of infinite 
Reynolds number. As mentioned previously, he concluded that the velocity 
profile is stable along the lower branch of the shear stress curve, but unstable 
along the upper branch. Hence, for Brinkman numbers greater than 18.214, we 
may expect this inviscid type of instability to occur and to appear at  finite values 
of the Reynolds number. 

The second mode of instability, the viscous mode, has as its origin the variation 
of viscosity throughout the flow channel. As shown by the last term in (2.14), a 
‘diffusive’ mechanism of viscosity variation is also present. Not only does the 
viscosity change continuously throughout the flow channel, but any mechanism 
which alters the position of a fluid particle in the flow field will also alter its 
viscosity. 

Craik & Smith (1968) treated the problem of free-surface flows with viscosity 
stratification. Later, Craik (1969) analysed plane Couette flow with variable 
viscosity and allowed for the presence of an arbitrary diffusive mechanism. The 
latter investigation, which is of greater importance in this discussion, revealed 
a stabilizing or destabilizing mechanism which depends upon a viscosity gradient. 
This is in contrast to Yih’s (1967) investigation of the stability of two superposed 
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fluids of different viscosity, where instability results from a viscosity disconti- 
nuity. Craik found that the flow may be stable or unstable at very small Reynolds 
numbers to disturbances of long wavelength. The flow is stable if the second 
derivative of the velocity distribution resulting from the viscosity stratification 
is positive at  the critical point, and unstable if the second derivative is negative. 
The critical point is, as usual, the point where the primary-flow velocity equals 
the real part of the complex wave speed. 

In the present flow problem, the critical point occurs at the centre of the 
channel, where the second derivative is zero. Prom Craik’s results, we cannot, 
therefore, conclude either stability or instability; only the existence of a neutral 
mode is assured. However, since this result is valid at  very low Reynolds numbers, 
we might expect the viscosity stratification in the present case to be a cause of 
instability at higher, though finite, Reynolds numbers. 

The first two modes result primarily from the momentum equation. We now 
turn to the coupling mode and the thermal mode, for which the energy equation 
is more important. 

The presence of the coupling mode, as pointed out above, is a direct conse- 
quence of the interaction of the two equations. Similar types of instability have 
been noted in the analysis of natural convective flows, and are expected to occur 
in the present investigation since the governing equations are of the same nature. 

That a fourth unstable mode exists is beyond question because of the character 
of the neutral stability curves. The explanation for cause of this mode, however, 
must remain purely speculative in nature. We shall attribute this mode to purely 
thermal effects. Joseph (1964) examined the stability of the temperature distribu- 
tion. He concluded that the temperature profile is stable for Brinkman numbers 
less than 18.214, but unstable for Brinkman numbers above this critical value. 
Joseph, however, was not investigating the stability of the flow, since he treated 
only a one-dimensional disturbance to the diffusion equation. Hence, we may 
only conclude that a possible, and reasonable, cause is purely thermal in nature. 

5.2. Shape of the neutral stability surface 

The neutral stability surface governing plane Couette flow with frictional heating 
and temperature-dependent viscosity is best described in the four-dimensional 
space of wavenumber and Reynolds, Prandtl and Brinkman numbers. 

To assign one of the above-mentioned modes of instability to the archetypes 
in figure 3, it is necessary to compare the various curves of figure 1 to ascertain 
to what extent the Prandtl number influences each Brinkman number curve. 

Curve A shows a strong dependence upon Prandtl number for intermediate 
Brinkman numbers (25, 30 and 40), and varies but little a t  the higher Brinkman 
numbers. Curve B, for a given Brinkman number, is almost independent of the 
Prandtl number. Curve C behaves similarly to A : high Prandtl number depend- 
ence at  lower Brinkman numbers, with the effect of Prandtl number decreasing 
as the Brinkman number is increased. Finally, curve D shows a most peculiar 
Prandtl number dependence. At low Prandtl numbers, the curves are essentially 
independent of Prandtl number. However, for the highest Prandtl number 
curves, the Prandtl number effect is quite significant. 
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An analysis of the calculated eigenvalues revealed that the two modes which 
occur at the lowest Reynolds number, curves A and B of figure 3, are character- 
ized by having an eigenvalue with zero real part, i.e. co is purely real. This means, 
from (2.28) and (2.15), that & is 0.5 for these points on the neutral stability curve. 
Since this is the velocity on the centre-line, it  indicates that the disturbances 
which occur at the lowest Reynolds numbers arise from the critical layer in the 
flow field. 

The two higher Reynolds number curves, curves C and D, on the other hand, 
are characterized by co occurring in complex-conjugate pairs. The real part & of 
the complex wave speed is no longer equal to the centre-line primary-flow 
velocity, and the origin of instability moves out of the critical layer. 

Consider first the inviscid mode. If the flow becomes unstable because of the 
velocity profile, we would expect this mode to originate a t  the critical layer, to 
be essentially independent of the Prandtl number and to occur only at Brinkman 
numbers above the critical value. The curve that fulfils these requirements is 
curve B. Furthermore, this curve moves to lower values in the Reynolds number 
plane as the Brinkman number is increased, which is what would be expected of 
this mode since the velocity profile is becoming more and more skewed. 

The nature of the eigenvalues a t  neutral stability for curve A is the same as 
for curve B, but the parameter dependence is very different. There is a strong 
effect of Prandtl number at the lower Brinkman numbers, the flow becoming 
more unstable as Pr is increased. As the Brinkman number is further increased 
the effect of Prandtl number is diminished, and actually reverses at  the highest 
Br. This behaviour may be explained by identifying this curve with the coupling 
mode. At low Brinkman numbers, the coupling results from the penultimate 
term in (2.15), the convective term. As the Prandtl number is increased, this 
term becomes more and more important, and the neutral curve moves to lower 
values o f  the Reynolds number. The Prandtl number is so important, in fact, that 
the coupling mode, absent for Pr = 1 and Br = 30, becomes the dominant mode 
as the Prandtl number is increased to 5. As the Brinkman number is increased, 
however, the last term in the energy equation, the viscous heating term, begins 
to dominate, and the effect o f  Prandtl number is lessened. Physically, at low 
Brinkman numbers, the P6clet number is the important parameter. Increasing 
the Prandtl number essentially means decreasing the thermal conductivity, and 
the heat conduction process in the fluid is decreased. At very high Brinkman 
numbers, an increase in Prandtl number corresponds to increasing the heat 
capacity of the fluid, thereby decreasing somewhat the magnitude of the thermal 
variations. 

Curve C of figure 3 is most easily explained on the basis of a purely thermal 
mechanism. As the Prandtl number increases, the critical Reynolds number 
decreases, for any Brinkmannumber. However, the larger the Brinkman number, 
the less effect the Prandtl number has. This is the behaviour we would expect, if 
the first three terms in (2.15) are identified with this thermal mechanism. As the 
Brinkman number increases, the significance of this mode becomes less compared 
with that of the two previously mentioned modes. 

Finally, we come to curve D, where shape is most easily explained by 
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identifying this curve with the viscous mode. The neutral stability curve is 
almost independent of both the Brinkman number and Prandtl number at  the 
lowest Prandtl number, but changes drastically as the Prandtl number is 
increased from 5 to 50, although the Brinkman number effect is still not very 
pronounced even a t  this high Prandtl number. Consider the cause of the viscous 
mode : stratification of viscosity, coupled with a diffusive mechanism, the energy 
equation. At low Prandtl numbers, the diffusive mechanism is not important, 
and this should be reflected in the neutral stability curves. As the Prandtl number 
is increased, however, the importance of the coupled energy equation is enhanced, 
and character of the neutral curve should change. Thus, the viscous mode is 
comprised of two different subclasses: one with and one without an associated 
diffusive mechanism. The former subclass should only be important at  high 
Prandtl numbers. The fact that the curves are almost independent of Brinkman 
number can be explained by remembering that this mode is primarily due to the 
gradient of viscosity, which is not greatly changed as the Brinkman number 
varies by a factor of two from 15 to 30. As the Brinkman number increases 
further, however, this mode becomes relatively unimportant. 

6. Conclusion 
We have presented the neutral stability curves for a plane Couette flow of 

a Newtonian liquid with an exponential dependence of viscosity on temperature. 
Four different modes of instability, typified by the four neutral curves of figure 3, 
were found. The four curves A, B, C and D are associated with a coupling mode, 
an inviscid mode, a purely thermal mode and a viscous mode, respectively. 

The primary flows described herein would not be difficult to generate experi- 
mentally. The Brinkman numbers, though they appear to be large at  first glance, 
can easily be realized. It is a relatively simple task to choose a fluid with a large 
enough p and large enough po so that Brinkman and Reynolds numbers of the 
same order of magnitude as those given here can be attained. Our recent work on 
chlorinated polyphenyls has shown values ofpfrom 30 to 90 and viscosities in the 
range of 1 to lo5 poise. Such fluids also behave in a Newtonian manner up to 
very large shear rates. 

The authors would like to express their thanks to the University Computing 
Centre, University of Massachusetts, for supplying the computer time required 
to perform all the numerical calculations. 

Appendix A. Squire’s theorem 
Squire (1933) was able to show that the stability problem with three- 

dimensional disturbances is equivalent to a two-dimensional problem at a lower 
Reynolds number for isoviscous plane Couette flow. Obviously, it would be very 
helpful if a theorem analogous to Squire’s held in the present analysis as well. 
Unfortunately, this is not the case. When only the momentum equation is con- 
sidered, Squire’s theorem is valid. However, because of the viscous dissipation 
terms, the theorem cannot be proved with regard to the energy equation. 
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The momentum equation 

If, instead of equation (2.1 1), we assume three-dimensional disturbances for ui 
and B of the form 

(A 1) P = O ( r 2 )  exp {i(% + Y93 - C I . 6 3 1  

andsubstitute (A 1) into (2.8) and (2.7), we arrive at anequation similar to (2.10). 
Again, letting Q, = v we have 

- ia( u - [) [D2 - (a2+y2)]v +iavDZU 
+ 2Re-IDgD[D2 - (a2 + y2)]v  + Re-I(gDU) ia[D2 + (a2 + y 2 ) ] 8  
+ Re-1D2g[D2 + (a2 + y2)]  v + gRe-I[D2 - (a2 + y2)] v = 0. (A 2 )  

Multiplying by (a2 + y2)a/a, defining 

(A 3) 
- a2 = a2 + y2, Re = E-l Re, 7 = ia9 

and rearranging, we find that 

DZ(gD2v) - ~ E ~ D ( ~ D V )  + i?(D2g) v + ~ 4 g v  + iERe(D2U) v 

- iERe(U-!J(D2-E2)v+gDU(D2+E2)F = 0. (A 4)  

This is exactly the equation satisfied by a two-dimensional disturbance. Since 
Re is necessarily less than Re, Squire’s theorem is proved, at least for the 
momentum equation. 

The energy equation 
If we take 9 as being a three-dimensional disturbance of the form (A i), substitu- 
tion of this into (2.iO) gives 

where u is the velocity in this rl direction. 
There is no way to eliminate the Du term in this equation without introducing 

another extraneous term. The energy equation with three-dimensional disturb- 
ances cannot be reduced to the same form as the equation with two-dimensional 
disturbances. 

We have arrived a t  a rather peculiar result. Squire’s theorem is valid for the 
momentum equation, but not for the energy equation. Considering only two- 
dimensional disturbances is sufficient if the disturbances come from the velocity 
equation, but if the disturbances come from the energy equation, we must look 
at three-dimensional disturbances to obtain the critical Reynolds number. 

Appendix B. Definitions of integrals 
Substitution of the series approximation for v and F, equations (2.20) and 

(2.24) into the conservation equations for the disturbances, equations (2.17) and 
(2.18), gives the errors E& and &: 
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n = l  
C {a,[D2(gD2S,) - 2a2D(gDSn) + a2(D2g)X, 

+ a4gSn + +iaRe(D2@) S,  - +iaRe(@ - 5 )  (D2 - a2) S,] 

+ bn[D2(gD2Cn) - 2a2D(gDCn) + a2(D2g) C, 

+ a4gC, + $iaRe(D2@) C, - $iaRe(@- 5 )  (D2 - a2) C,] 

+c,[Q(D2+a2)sinpny] +dn[Q(D2+a2) cospny]} = &, (B 1) 
N 

n = l  
C {c,[(D2- a2) sinp,y - +QBr(D@) sinpny - @ape(@ - c) sinp,y] 

+ d,[(D2 - a2) cosp,y - +$X?r(D@) cos p, y - &ape(@ - 5)  cosp,y] 

+a,[ - iaPe(D0) S, - 2QBr(D2+ at)  S,] 

+b,[-iaPe(DO)Cn- 2QBr(D2+a2)Cn]} = eh. (B 2 )  

Equatioiis (B 1) and (B 2) are substituted into equations (2.25), and the 
integrations are performed. We define the integrals 

+1 

-1 
QTj = 1': cosh2 by(D2Sn) (D2Si) dy, Q2j = 1 cosh2 by (DS,) (OXj) dy, - 

f l  

-1 & -1 
RFj =!+' tanhbycosp,ysinpiydy, STi = 1 tanhbyCnsinpjydy, 

f l  

-1  
T;"' = Pnpj Jnj, 

Up* = 

T;' = 1 sech2 by cosp,y cospjy dy, 
+1 

-1 
tanh by Sn cospi y dy. 
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These integrals are used in equations (2.25). A simplification of these equations 
results if we also defke 

and 
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